svars - Data-Driven Identification of SVAR Models
Implements data-driven identification methods for
structural vector autoregressive (SVAR) models as described in
Lange et al. (2021) <doi:10.18637/jss.v097.i05>. Based on an
existing VAR model object (provided by e.g. VAR() from the
'vars' package), the structural impact matrix is obtained via
data-driven identification techniques (i.e. changes in
volatility (Rigobon, R. (2003)
<doi:10.1162/003465303772815727>), patterns of GARCH (Normadin,
M., Phaneuf, L. (2004) <doi:10.1016/j.jmoneco.2003.11.002>),
independent component analysis (Matteson, D. S, Tsay, R. S.,
(2013) <doi:10.1080/01621459.2016.1150851>), least dependent
innovations (Herwartz, H., Ploedt, M., (2016)
<doi:10.1016/j.jimonfin.2015.11.001>), smooth transition in
variances (Luetkepohl, H., Netsunajev, A. (2017)
<doi:10.1016/j.jedc.2017.09.001>) or non-Gaussian maximum
likelihood (Lanne, M., Meitz, M., Saikkonen, P. (2017)
<doi:10.1016/j.jeconom.2016.06.002>)).